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Abstract. The ability to selectively attend to relevant stimuli while fil-
tering out distractions is essential for agents that process complex, high-
dimensional sensory input. This paper introduces a model of covert and
overt visual attention through the framework of active inference, utilizing
dynamic optimization of sensory precisions to minimize free-energy. This
work addresses the lack of active inference models that integrate visual
attention with continuous sensory representations and deep generative
models for robotics. Our proposed model determines visual sensory pre-
cisions based on both current environmental beliefs and sensory input,
influencing attentional allocation in both covert and overt modalities. To
test the effectiveness of the model, we analyze its behavior in the Posner
cueing task and a simple target focus task using two-dimensional (2D)
visual data. Reaction times are measured to investigate the interplay be-
tween exogenous and endogenous attention, as well as valid and invalid
cueing. The results show that exogenous and valid cues generally lead to
faster reaction times compared to endogenous and invalid cues. Finally,
we show that reflexive saccades are faster than intentional ones, though
less adaptable, and discuss the implications for robotic applications.

Keywords: Active inference· Visual attention· Posner cueing task.

1 Introduction

Attention as a cognitive process allows agents to selectively focus on specific
stimuli while ignoring others. This ability helps humans avoid sensory overload,
and as robots acquire more complex sensory channels it could help decrease the
computational load required to perform in daily tasks, such as object tracking
and visual search, as well as social interactions [20–22]. Attention is often sepa-
rated into top-down, or goal-driven attention, and bottom-up or stimulus-driven
attention, with some theories including hysteresis as a third component [38]. Top-
down attention bilaterally activates dorsal posterior parietal and frontal regions
of the brain, while bottom-up attention activates the right-lateralized ventral
system, with the dorsal frontoparietal system combining the two into a “salience
map” during visual search [6,23]. Furthermore, visual attention is separated into
overt and covert attention [1, 18], with overt attention involving saccadic eye
movements to the attentional target, and covert attention referring to attention
shifts to the target while the eyes remain fixated elsewhere.
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Visual attention and its models are most often tested using the Posner cue-
ing task, i.e., the Posner paradigm. The Posner cueing task is an experimental
paradigm used to study covert visual attention [33, 34]. Participants are asked
to fixate on a central point while a cue directs attention to a location where a
target may appear. The cue can either be endogenous – meaning that atten-
tion is voluntarily guided based on symbolic cues (e.g., an arrow pointing left
or right), or exogenous – meaning that attention is automatically drawn by a
sudden, peripheral stimulus (e.g. a bright flash or a flickering box). Endogenous
cueing is considered to be top-down because it requires cognitive processing
and active interpretation of the cue, while exogenous cueing is considered to be
bottom-up because it does not require conscious interpretation. Reaction times
are measured to assess how cues influence attentional shifts.

Through the original Posner paradigm [33, 34] and its variations, valuable
insights have been gained about attentional processes. Covert attentional shifts
to a target area occur prior to any eye movement [31, 33], and valid cues pro-
duce faster responses than invalid cues [33, 34]. Exogenous cues were shown to
produce faster reaction times than endogenous cues [4,13], showing that bottom-
up attention is faster because it requires no conscious processing. The question
of weather attentional selection is object-based or location-based has also been
thoroughly researched, and the consensus is that both types are not mutually
exclusive, but are dependent on the current task [7,37,43]. Research supporting
location-based attention has shown that target eccentricity, i.e. the target dis-
tance from the central focus point, plays a role in reaction time, with reaction
times increasing as target eccentricity increased [2, 17,32].

Multiple approaches exist to model attention, many of which are based on
Bayesian inference [9, 12, 24, 26–28, 30, 36, 42]. Previous studies have modeled
visual attention and active saccades in visual search tasks [9, 24, 26, 27]. How-
ever, the integration of visual attention and bottom-up action within the ac-
tive inference framework—operating directly on raw two-dimensional visual in-
put—remains largely unexplored. This gap is especially significant in robotics,
where vision is a core sensory modality and visual data provide the primary
basis for decision-making and interaction with the environment. A key limita-
tion of many existing models [24, 26, 27, 36] is their reliance on discrete sensory
inputs or internal states. While suitable for abstract tasks, such discretization
is problematic for robotics, where sensory and motor variables are inherently
continuous. Treating continuous signals as discrete reduces precision and limits
applicability in real-world scenarios. By contrast, continuous representations nat-
urally reflect the analog nature of sensorimotor data and enable more accurate
perception, motion control, and sensorimotor learning [5,8,41]. In addition, sev-
eral of these models either omit deep generative models altogether [9, 24, 26, 27]
or, in cases where 2D data are used [36], do not leverage deep architectures.
Conversely, active inference implementations that employ deep generative mod-
els, such as [3, 35], do not address visual attention. Overall, prior work has not
yet integrated visual attention, continuous sensory representations, and deep
generative models into a single active inference framework suitable for robotics.
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In this paper we propose a model of visual attention, shown in Fig. 1, viewed
through the lens of active inference [29] – a computational approach derived
from the free-energy principle (FEP). According to the FEP, systems adapt and
act in a way that minimizes their free-energy [11]. Free-energy is a concept bor-
rowed from physics, statistics, and information theory that limits the surprise
on a sample of data given a generative model. This principle helps to explain
how biological systems resist the natural tendency to disorder, and their action,
perception, and learning processes [10]. In the FEP, attention is theoretically
achieved by optimizing sensory precisions, their parameters, and mutual preci-
sion weighing [9,14,24,26–28,30]. Biased competition and endogenous/exogenous
attention have been studied in this context, and the precision optimization pro-
duces behaviors similar to human attention [9, 42].

This study introduces a hierarchical active inference model of overt and covert
visual attention, addressing precision optimization for visual data as a mecha-
nism for endogenous and exogenous attention as well as action control. The
model integrates both top-down and bottom-up processes, enabling covert and
overt shifts of attention. Its performance is demonstrated through the Posner
cueing task and a simple target-focus task on two-dimensional visual input.
The primary goal is to develop a model that accurately captures human at-
tentional mechanisms while establishing a foundation for robotic applications,
including active visual search and joint attention in human–robot interaction.
To address previously mentioned limitations, we propose a hierarchical active
inference model that incorporates visual attention mechanisms within a deep
generative framework, using continuous internal states and raw two-dimensional
visual data as input. A variational auto-encoder (VAE) serves as the visual gener-
ative model, while model training and experiments are conducted in the Gazebo
simulator under the Robot Operating System (ROS).

The paper is organized as follows. In Sec. 2 we give an overview of the the-
oretical background and elaborate the proposed approach that is based on free-
energy minimization with 2D precision optimization and overt saccades through
active inference. Section 3 shows the results of the Posner cueing tasks and ac-
tive attention trials. Section 4 provides the discussion of the results while Sec. 5
concludes the paper and provides directions for future work.

2 Proposed Method

2.1 Free-energy Minimization

Free-energy is defined as the negative evidence lower bound (ELBO), or as the
sum of the Kullback-Leibler (KL) divergence and the surprise [9–11]:

F (z, s) = −L(q) = DKL[q(z)||p(z|s)]− ln p(s), (1)

where z and s represent latent system states and sensory observations, respec-
tively, while the KL-divergence is computed between the posterior p(z|s) and the
approximate variational density q(z). Given that, the surprise is defined as the
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negative log-probability of an outcome − ln p(s). If the variational density q(z)
is assumed to factor into Gaussian probability density functions (pdfs) [9,11,35]:

q(z) =
∏
i

q(zi) =
∏
i

N (µi,Π
−1
i ), (2)

the free-energy then becomes dependent only on the most probable hypotheses,
beliefs µi, and precision matrices Πi of the latent system states z [9, 35]:

F (µ,Π, s) = − ln p(s,µ,Π) + C

= − ln p(s|µ,Π)− ln p(µ,Π) + C
(3)

Furthermore, sensory observations s and beliefs µ are defined in the context of
hierarchical dynamic models [9–11,35]:

s̃ = g̃(µ̃) +ws

Dµ̃ = f̃(µ̃) +wµ.
(4)

Here, µ̃ indicates generalized coordinates of beliefs with multiple temporal or-
ders, µ̃ = {µ,µ′,µ′′, · · · }, which allow for a richer approximation of the environ-
ment dynamics, D stands for the differential shift operator Dµ̃ = {µ′,µ′′, · · · }
in the generalized equation of system dynamics f̃(µ̃), while g̃(µ̃) is the sensor
model that maps current beliefs to sensory observations. The amplitudes of ran-
dom fluctuations ws and wµ are state dependent and are defined as Gaussian
pdfs with covariances Σs and Σµ, respectively [9, 35]:

ws ∼ N (µi,Σs(z, s,γ))

wµ ∼ N (µi,Σµ(z, s,γ)).
(5)

The covariances Σi are the inverses of precisions, Σi := Σi(z, s,γ) = Πi(z, s,γ)
−1,

with precision parameters γ that control the amplitudes [9, 42]. The precisions
are dynamic and depend on the current states and sensory input. It is through
optimization of precisions and their parameters that attention is achieved [9,14,
24,26–28,30].

2.2 Perceptual and Active Inference

Perception, action, and learning can all be optimized through the minimization
of free-energy. In this paper we only consider perception and action, and leave the
learning processes of attention for future work. Action and beliefs are optimized
through gradient descent [10,11,29,35]:

˙̃µ−Dµ̃ = −∂µ̃F (µ̃, Π̃, s̃)

ȧ = −∂aF (µ̃, Π̃, s̃).
(6)
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The likelihood and prior in (3) also become generalized and can be partitioned
within and across temporal orders d, respectively [35]:

p(s̃|µ̃, Π̃s) =
∏
d

p(s[d]|µ[d],Πs
[d])

p(µ̃, Π̃µ) =
∏
d

p(µ[d+1]|µ[d],Πµ
[d]).

(7)

These partitions are also assumed to take the following Gaussian pdf form:

p(s[d]|µ[d],Πs
[d]) =

|Πs
[d]| 12√

(2π)
L
exp

(
−1

2
e[d]s

T
Πs

[d]e[d]s

)

p(µ[d+1]|µ[d],Πµ
[d]) =

|Πµ
[d]| 12√

(2π)
M

exp

(
−1

2
e[d]µ

T
Πµ

[d]e[d]µ

)
,

(8)

where L and M are the respective dimensions of sensory observations s and
internal beliefs µ. Therein, e[d]s and e

[d]
µ represents sensory and system dynamics

prediction errors:
e[d]s = s[d] − g[d](µ[d]) = s[d] − p[d]

e[d]µ = µ[d+1] − f [d](µ[d]),
(9)

where p[d] = g[d](µ[d]) are sensory predictions generated by the generative sensor
model. Note that in our case the system dynamics model is defined through
flexible intentions h(k) [35], where for each intention k ∈ (0,K − 1):

f (k)(µ) = l ·E(k)
i +w(k)

µ = l · (h(k) − µ) +w(k)
µ , (10)

with l being the empirically-determined gain of intention errors E
(k)
i . This gain

could potentially be optimized through learning with the FEP. Flexible inten-
tions h(k) represent top-down attractors which are generated from current beliefs
and drive beliefs towards dynamic goals.The implementation of the generative
sensor models g[d] is presented in subsection 3.1.

Belief update With state- and sensory-dependent precisions, the belief update
takes the following form:

˙̃µ =Dµ̃+
∂g̃

∂µ̃

T

Π̃sẽs +
∂f̃

∂µ̃

T

Π̃µẽµ −DT Π̃µẽµ

+
1

2
Tr

[
Π̃−1

s

∂Π̃s

∂µ̃

]
− 1

2
ẽTs

∂Π̃s

∂µ̃
ẽs

+
1

2
Tr

[
Π̃−1

µ

∂Π̃µ

∂µ̃

]
− 1

2
ẽTµ

∂Π̃µ

∂µ̃
ẽµ,

(11)

with Tr being the trace of a matrix. The terms that comprise the belief update
equation are:
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– ∂g̃
∂µ̃

T
Π̃sẽs : likelihood error computed at the sensory level, representing the

free-energy gradient of the likelihood relative to the belief µ̃[d] in (9)

– ∂f̃
∂µ̃

T
Π̃µẽµ : backward error from the next temporal order, representing the

free-energy gradient relative to the belief µ̃[d+1] in (9)
– −DT Π̃µẽµ : forward error coming from the previous temporal order, repre-

senting the free-energy gradient relative to the belief µ̃[d] in (9)
– 1

2Tr
[
Π̃−1

s
∂Π̃s

∂µ̃

]
− 1

2 ẽ
T
s

∂Π̃s

∂µ̃ ẽs: free-energy gradients from the sensory preci-
sions, serves as bottom-up attention

– 1
2Tr

[
Π̃−1

µ
∂Π̃µ

∂µ̃

]
− 1

2 ẽ
T
µ

∂Π̃µ

∂µ̃ ẽµ: free-energy gradients from the system dy-
namics precisions, serves as top-down attention.

Action update Action is also updated through the minimization of free-energy
[10,11,29,35]:

a = argmin
a

F (µ,Π, s), (12)

with the action update taking the following form:

ȧ = −∂aF (µ,Π, s) = −∂s̃

∂a

T

Π̃sẽs +
1

2
Tr

[
Π̃−1

s

∂Π̃s

∂s̃

]
∂s̃

∂a
− 1

2
ẽTs

∂Π̃s

∂s̃
ẽs

∂s̃

∂a
,

(13)
with bottom-up attention components in relation to sensory input, analogous to
those in relation to belief in (11). These control signals act as reflexive saccades
[16,45]. The gradient ∂s̃

∂a is an inverse mapping from sensory data to actions.

3 Results

3.1 Implementation of the proposed model

A graphical overview of the model1 is shown in Fig. 1. The current belief state µ
is passed to exteroceptive, proprioceptive, and interoceptive generative models.
Their predictions p are compared to actual inputs s, with prediction errors
es driving both action and belief updates. Proprioceptive (camera pitch/yaw)
and interoceptive (symbolic cue) generative models are identity mappings, while
the exteroceptive visual model is the decoder of a disentangled VAE. The VAE
encodes target presence and position, simplifying conversion from intrinsic image
coordinates to extrinsic camera orientation.

The belief state consists of:

– Symbolic cue belief – position of an endogenous cue on the image, mir-
roring sensory input

– Camera orientation belief – proprioceptive pitch and yaw of the camera
1 Code, video examples, and details on VAE training and simulations are available at:

https://unizgfer-lamor.github.io/ainf-visual-attention/
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Fig. 1: Core structure of the proposed model. Beliefs about sensory causes are up-
dated through attractor goals and error signals to minimize free-energy. Bottom-
up attention is regulated by dynamic sensory precisions.

– Visual belief – disentangled encoding of target presence and position

– Covert attention belief – amplitude and center of an RBF governing
visual precisions

Beliefs are updated through bottom-up prediction errors and top-down at-
tractors α, following the flexible intentions theory in [35]. In our model, attrac-
tors for proprioceptive, visual, and covert attention beliefs are generated from
current visual and cueing inputs, allowing dynamic goals. These intentions drive
overt actions (camera orientation) and covert shifts (RBF updates).

Visual precision Πs is defined as a diagonal matrix:

Πs =


π1(µ, s) 0 · · · 0

0 π2(µ, s) · · · 0
...

...
. . .

...
0 0 · · · πL(µ, s)


L×L

, (14)

where L = 32 × 32 (×3) is the dimensionality of the visual data. Each pre-
cision term is determined by an RBF centered on the covert attention belief
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[µamp, µu, µv] and the centroid of the largest red object [ru(s), rv(s)]:

πi(µ, s) = π(x, y,µ, s) =
µamp

2

(
ln
(
− (x−µu)

2+(y−µv)
2

b2 + 1
)
+ c

)
+

1

2

(
ln
(
− (x−ru(s))2+(y−rv(s))

2

b2 + 1
)
+ c

)
,

(15)

with parameters b = 2.6 and c = 1, chosen to normalize RBF values between 0
and 1. This RBF form ensures that covert attention is drawn toward areas of
high prediction error, unlike Gaussian RBFs which repel from error. As shown
in Fig. 2, the resulting precision decreases with distance from the focus center,
mimicking human foveation [2, 32].

Fig. 2: An example of an RBF
precision matrix with the center
in (-0.25, 0.0).

Fig. 3: Experimental setups for the four
variations of the Posner Cueing Task,
with visual data used in experiments.
The red arrows represent symbolic en-
dogenous cues not visible through sen-
sory input.

3.2 Simulating the Posner Cueing Task

We evaluated the model’s implementation of exogenous and endogenous covert
attention using the Posner cueing task. The model received three types of sensory
input: (1) camera orientation (proprioceptive), (2) a symbolic cue signal (inte-
roceptive), and (3) visual input of an empty scene in which a red sphere may
appear as a target. Unlike traditional versions, the endogenous cue was delivered
as a symbolic interoceptive signal rather than a visual arrow, but still required
voluntary attentional shifts. Motor actions (overt attention) were disabled.

Four task variations were tested by combining two cue types (endogenous,
exogenous) with two validity conditions (valid, invalid):

– Endogenous cueing: the symbolic cue is internally processed to form a
top-down intention, shifting both covert focus and the target-position belief.

– Exogenous cueing: a brief appearance of the target object triggers a
bottom-up shift of covert attention via free-energy gradients and updates
the belief over the object’s position through the VAE likelihood error.
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In valid trials, the target appeared at the cued location; in invalid trials, it ap-
peared on the opposite side of the visual field. The task variations are illustrated
in Fig. 3.

Each condition was tested with N = 200 trials. A single trial proceeded as
follows:

– A random target position (with varying eccentricity) was generated, and the
model initialized (10 steps),

– A cue (endogenous or exogenous) was presented (50 steps),
– After a specified cue-target onset asynchrony (CTOA), the target appeared,
– The trial ended either upon detection, defined as the latent variable for

target presence becoming positive (marking the reaction time, RT), or after
300 steps if undetected.

The results are shown in Fig. 4. The left panel plots RTs as a function of
target eccentricity, while the right panel shows internal dynamics of covert focus
and target-belief updates, with clear facilitation in valid-cue conditions. The
model reproduces several well-established effects in human data and location-
based models:

– Cue validity: valid cues yield faster RTs than invalid ones [33,34], consistent
with the spotlight theory of attention [7, 37, 43]. Invalid cues increase RTs
due to larger spotlight shifts at target onset.

– Cue type: exogenous cues produce faster RTs than endogenous cues [4,13],
as bottom-up signals propagate directly via error gradients, while endoge-
nous cues require symbolic interpretation and intentional updating.

– Target eccentricity: RTs increase with target distance from fixation [2,
17, 32], reflecting both location-based encoding and the shape of the RBF
precision function.

As shown in Fig. 4(right), covert attention centers update more rapidly than
beliefs over target location in both cueing conditions. This aligns with empirical
findings that covert shifts precede conscious target perception [31,33] and overt
attention [16,45].

To examine the effect of cue-target onset asynchrony, all four conditions
were repeated across different CTOA values. Fig. 5(left) shows that valid cues
consistently yield faster RTs than invalid ones across CTOAs. The endogenous
cueing results, shown in Fig. 5(right), replicate classic Posner findings [9,33,34],
including the asymmetric pattern where invalid cues impose a greater cost than
the benefit provided by valid cues.

3.3 Action Signals from Bottom-up Attention

Since action can be determined from free-energy optimization, overt attention in
the form of eye saccades or camera orientation changes can be also implemented.
Here we examined focus reach times for two action-update contributions:
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Fig. 4: Reaction time and target eccentricity relationship for endogenous and
exogenous cueing. Left: reaction times and their averages as a function of target
distance from focus point (CTOA = 100 for each trial) Right: covert attention
center (dashed lines) and sphere position beliefs (solid lines) during valid trials,
for both endogenous and exogenous cues. The horizontal line is the true target
distance from center, and the vertical lines indicate trial events: the cue appears
at step 10, disappears at step 60, target appears at step 160.

0 100 200 300 400

60

80

100

CTOA (steps)

R
ea

ct
io

n
T

im
e

(s
te

ps
)

Endogenous-Valid
Endogenous-Invalid
Exogenous-Valid
Exogenous-Invalid

0 200 400 600 800 1,000

300

350

400

CTOA (ms)

R
ea

ct
io

n
T

im
e

(m
s)

Simulated-Valid
Simulated-Invalid
Empirical-Valid
Empirical-Invalid

Fig. 5: Comparison of reaction times from simulated and empirical results. Left:
average trial reaction time as a function of CTOA. Results are shown for
endogenous-valid, endogenous-invalid, exogenous-valid, exogenous-invalid task
variations. Right: comparison of simulated and empirical human data [34] for
endogenous cueing. Simulated reaction times are shown up to an arbitrary con-
stant reflecting the scale gap between human times and simulation steps.

– Top-down proprioceptive action signals: − ∂s̃
∂a

T
Π̃sẽs – these are determined

from the prediction error of the proprioceptive channel, between the propri-
oceptive input and current proprioceptive beliefs
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– Bottom-up visual precision action signals: 1
2Tr

[
Π̃−1

s
∂Π̃s

∂s̃

]
∂s̃
∂a−

1
2 ẽ

T
s

∂Π̃s

∂s̃ ẽs
∂s̃
∂a

– these are determined through the bottom-up derivative of the precision
matrix. Since the action update is dependent only on the sensory input,
only the second half of (15) contributes to the action update.

The trials start with a 10-step initialization interval, after which the target
appears at a random position in the agent’s field of view. The trial is finished
when the agent successfully focuses the target at the center of its field of view.

The reach times as a function of the initial target distance can be seen in Fig.
6. The results show that bottom-up overt orienting is overall faster than top-
down intentional orienting, which is explained by the sensitivity of the precision
to red objects (or any predetermined visual object of interest, like faces [16]).
This is similarly reflected in how reaction time changes with distance. Both forms
of orienting exhibit an increasing trend in reaction time as distance increases;
however, top-down orienting shows a steeper rise, indicating a greater sensitivity
to distance compared to bottom-up orienting.

4 Discussion

Our proposed model was evaluated on exogenous, endogenous, valid, and in-
valid variations of the Posner paradigm, as well as a simple target reach task.
It successfully reproduces key attentional effects observed in human data and
location-based models, including the influence of exogenous versus endogenous
cues, cue validity, and overt behaviors such as involuntary saccades.

A central contribution of this work is the integration of visual attention mech-
anisms, continuous sensory representations, and deep generative models within
an active inference framework. By operating directly on raw two-dimensional
visual input, the model overcomes the limitations of prior approaches that rely
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on discrete inputs or lack deep generative components, making it more suitable
for robotic applications.

The overt attention experiments reveal a trade-off between speed and flexibil-
ity: bottom-up orienting enables rapid but singular shifts to individual objects,
while top-down orienting is slower but allows flexible allocation across multiple
objects. This trade-off has direct implications for robotics. One application is
active visual search, where robots adjust their viewpoint to locate a target ob-
ject, potentially using intermediate objects to guide attention through top-down
processes [19,39,40,44,46]. For instance, when searching for a keyboard, a desk
might serve as a top-down cue directing attention upward, while the keyboard
itself, once detected, would attract bottom-up attention due to its salient fea-
tures. Another application is joint attention in human–robot interaction, where
human gaze and head movements guide the robot’s attention toward relevant
objects in the shared environment [15, 25]. In both cases, our model integrates
bottom-up attention, where salient objects attract attention directly, and top-
down attention, where contextual cues guide attention across the scene—both
essential for natural and adaptive active vision in robots.

5 Conclusion

In this paper, we have proposed an active inference model of covert and overt
visual attention. The proposed model successfully demonstrates known atten-
tional phenomena and mechanisms in the context of the Posner cueing task and
a simple active orienting task. It shows that valid cues produce faster reaction
times than invalid cues, and that exogenous cues produce faster reaction times
than endogenous cues. The model also successfully demonstrates location-based
attention, with reaction times increasing with target eccentricity.

Future work will extend the model with multiple possible targets/intentions
to further test object-based and location-based effects, as well as with top-down
attentional mechanisms that lead to inhibition of return. Overt saccades will
also be examined further, with a focus on varying attraction to different objects
in tasks such as active visual search and joint attention. We plan to further
develop and test this framework as a model of perception, learning, and action
in autonomous robots.
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